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Aim: Hippocampal neuronal network and synaptic impairment underlie learning and memory deficit in Alzheimer’s dis-
ease (AD) patients and animal models.  In this paper, we analyzed the dynamics and complexity of hippocampal neuronal 
network synchronization induced by acute exposure to carbachol, a nicotinic and muscarinic receptor co-agonist, using the 
nonlinear dynamical model based on the Lempel-Ziv estimator.  We compared the dynamics of hippocampal oscillations 
between wild-type (WT) and triple-transgenic (3xTg) mice, as an AD animal model.  We also compared these dynamic alter-
ations between different age groups (5 and 10 months).  We hypothesize that there is an impairment of complexity of CCh-
induced hippocampal oscillations in 3xTg AD mice compared to WT mice, and that this impairment is age-dependent.   
Methods: To test this hypothesis, we used electrophysiological recordings (field potential) in hippocampal slices.   
Results: Acute exposure to 100 µmol/L CCh induced field potential oscillations in hippocampal CA1 region, which exhib-
ited three distinct patterns: (1) continuous neural firing, (2) repeated burst neural firing and (3) the mixed (continuous and 
burst) pattern in both WT and 3xTg AD mice.  Based on Lempel-Ziv estimator, pattern (2) was significantly lower than pat-
terns (1) and (3) in 3xTg AD mice compared to WT mice (P<0.001), and also in 10-month old WT mice compared to those in 
5-month old WT mice (P<0.01).  
Conclusion: These results suggest that the burst pattern (theta oscillation) of hippocampal network is selectively impaired 
in 3xTg AD mouse model, which may reflect a learning and memory deficit in the AD patients.
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Introduction

Carbachol is poorly absorbed through the gastrointesti-
nal tract and never crosses the blood-brain barrier.  Carba-
chol is a parasympathomimetic compound that stimulates 
both nicotinic and muscarinic receptors[1, 2].  Carbachol, a 
cholinergic agonist, induces rhythmic oscillations in pyrami-
dal neurons in the CA1 and CA3 hippocampal areas through 
the activation of class I interneurons using multiple collater-
als.  GABA-A (γ amino butyric acid-A) receptors are essen-
tial in keeping the carbachol oscillations’ repeatability[3].  
Another study claimed that glutamatergic neurons’ afferent 
fibers are responsible for the class I interneurons’ rhythmic 
excitation[4].

One study used carbachol as a muscarinic receptor ago-

nist to activate three different oscillation types in the CA3 
region in rat hippocampal slices.  It stimulated synchronous 
discharges (called carbachol-delta) using low concentra-
tions (4−13 µmol/L), while higher concentrations (13−60 
µmol/L) activated a very distinctive oscillation patterns 
(called carbachol-theta)[5].  Researchers have shown that, 
carbachol, when applied between 8−25 µmol/L, can also 
activate spontaneous γ oscillation episodes again in the 
CA3 area of hippocampal slices[5–7], which is mediated by 
the activation of GABA-A and AMPA (α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid) receptors[8].  Further-
more, carbachol is proven to induce β-oscillations in the 
hippocampal slices[9].  A recent study that characterizes 
carbachol oscillation’s pharmacological and cellular features 
in the rat hippocampal slice suggested that the oscillations 
in CA1 area need the CA3 region’s synaptic propagation for 
initiating the carbachol oscillations[10, 11].

Carbachol also induces 40 Hz oscillations in the slices 



860

 www.nature.com/apsAkay M et al

taken from hippocampal CA3 region.  The oscillatory electri-
cal activity can be observed as a response to many different 
stimuli in the CA3 region’s pyramidal cells of the hippocam-
pal slice.  Carbachol oscillations have similar frequencies 
with these oscillations, called “θ-rhythm” in vivo.  A success-
ful in vitro model of those oscillations should show similar 
cell-cell interactions as in vivo structures[11, 12].

Traub et al has suggested that, in many epilepsy models, 
the features of carbachol oscillations are akin to the epilep-
tiform bursts than to the θ-rhythm[13].  Scanziani et al stated 
that carbachol oscillations in the CA3 region’s neurons in 
the hippocampus exhibited a more controlled behavior than 
other sites of epileptiform bursting.  This could be because 
the glutamate release by the muscarinic receptors on the 
CA3 nerves is partially suppressed[14].

Nicotinic acetylcholine receptors (nAChRs) are a group 
of ligand-gated ion channels that play an important role 
in many of the brain’s cognitive functions[15].  Alzheimer’s 
disease (AD) is a neurological disorder that progressively 
destroys cognitive function.  At the cell level, cholinergic 
neurotransmission deficits such as decrease in ACh (acetyl-
choline) release and choline acetyltransferase activity, and 
cholinergic neuron loss in the basal forebrain occur early 
in AD, leading to cognitive impairment[16].  Other distinc-
tive characteristics of AD are intracellular neurofibrillary 
tangles made of tau protein and extracellular neuritic plaques 
made of the β-amyloid peptide (A-Beta1-42)[16].  Pettit et al 
investigated A-Beta1-42’s role on nAChR currents in the rat 
hippocampal slice, since this is the brain’s primary area for 
cognitive tasks.  Nicotinic currents stimulated by the local 
photolysis of caged-carbachol are blocked by A-Beta1-42 
binding to nAChRs[17].  These researchers further explored 
that this inhibition is applied by the peptide fragment that 
includes amino acid residues 12-28, by the A-Beta12-28 part 
of the A-Beta1-42[18].

Liu and Wu further suggested that soluble A-Beta is 
more associated with cognitive decline in AD patients than 
insoluble fibril deposits, which has been also confirmed 
by the studies in APP transgenic mouse models[19].  Goto 
et al showed that carbachol reduced the field excitatory 
postsynaptic potentials (f EPSPs) in the hippocampal CA1 
region in both wild-type and transgenic mice at 5 µmol/L 
concentration[20].  Auerbach and Segal reported similar 
results, suggesting that reduced field EPSPs were because of 
presynaptic muscarinic acetylcholine receptor stimulation in 
rat hippocampus with the effect of carbachol in micromolar 
concentrations[21].

Physiological signals have a wide variety of forms.  To 
describe them, traditional feature measures typically extract 

amplitude and frequency information.  This makes compari-
son of signals which have different bandwidths difficult[22].  
In addition, such measures do not allow comparison within 
subject groups, as the absolute frequency of rhythms may dif-
fer from person to person, and may depend on other factors 
such as patient sex and age.  Hence, additional analysis meth-
ods are needed to be developed.  When visually inspecting 
signals, one of the first impressions is their “complexity.” In 
the present study, we have analyzed the complexity and the 
dynamics of carbachol-induced neuronal oscillations in the 
hippocampal CA1 area in both WT and 3xTg AD mice with 
5- and 10-month old ages by utilizing the Lempel-Ziv (LZ) 
method.

Materials and methods

Hippocampal slice preparation  Hippocampal slices 
were prepared from 5- and 10 month-old mice that were 
sacrificed in accordance with Institutional Animal Welfare 
Committee guidelines, as previously described[23, 24].  After 
isoflurane-induced anesthesia, brain tissue was quickly 
removed and bathed in cold (4 °C) artificial cerebrospinal 
fluid (ACSF) containing (in mmol/L): 135 NaCl, 3 KCl, 16 
NaHCO3, 1 MgCl2, 1.25 NaH2PO4, 2 CaCl2, and 10 glucose, 
bubbled with 95% O2–5% CO2 (carbogen).  This specific 
ACSF composition was chosen because it has been success-
fully used in previous γ oscillation studies[25–28].  Using a 
vibratome (Vibroslice 725 M, WPI, Sarasota, FL, USA), sev-
eral 400-µm transverse coronal sections containing the dor-
sal hippocampus were cut, transferred to a holding chamber 
and were incubated at room temperature (22±1 °C) for at 
least 60 min in ACSF prior to recording.  Next, one slice was 
transferred to a liquid-air interface chamber (Fine Science 
Tools Inc, Foster City, CA, USA) and was suspended on a 
nylon net at the liquid-air interface in a bath of continuously 
dripping ACSF (2−2.5 mL/min) bubbled with carbogen.  
Humidified carbogen was passed along the upper surface of 
the slice and bath temperature was regulated by a feedback 
circuit accurate to 0.5±0.2 °C.  Baseline temperature was 
34±1 °C.  Carbachol (CCh) was the chemical used in this 
study and was purchased from Sigma.

Electrophysiological recordings  Standard extracel-
lular field potential recordings were performed from the 
hippocampal CA1 cell layer using borosilicate glass micropi-
pettes pulled to a 1 mm tip diameter and filled with 2 mol/L 
NaCl[23, 24].  Recordings were made using an Axoclamp-2B 
amplifier (Axon Instruments Inc, Union City, CA, USA).  
CCh was applied continuously during recording period.  
The CCh was dissolved in ACSF, and the drug solution was 
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dripped at the same rate into the bath as drug-free ACSF 
(2−2.5 mL/min).  Washout was accomplished by switching 
from the dripping solution containing the drug to the drug-
free ACSF.  The drug application’s effects were observed 
20−60 min after perfusion.

Data acquisition and analysis  Data were acquired by 
pClamp 9 via an Axon Digidata 1322 (Axon Instruments, 
Inc, Union City, CA, USA) interface board set to a 10 kHz 
sampling frequency, filtered in Clampex 9.0 using an 8-pole 
Bessel filter and a 1-kHz low-pass filter, and stored on 
hard media for subsequent off-line analysis.  The induced 
response’s power in the frequency spectrum was calculated 
off-line using Fast Fourier Transform (FFT) in Clampfit 
software 9.0 (Axon Instruments).  Statistical comparisons of 
results were performed using Origin 5.0 (Microcal Software, 
Inc, Northampton, MA).  Spike counting was performed 
off-line using Clampfit by setting a threshold of 3 times base-
line noise.  Prior to having the program count the number 
of spikes, those above threshold were manually confirmed.  
Waveforms having an interspike interval (ISI) under 12.5 
ms (frequency greater than 80 Hz) were excluded.  Also, no 
further spikes were considered after two or more consecutive 
ISIs over 33.3 ms had been identified.

Lempel-Ziv complexity   Synaptic connections between 
CA1 and CA3 neurons trigger the neural oscillations 
induced by carbachol, resulting in rhythmic excitation of 
CA1 region.  Thus, the rhythmic activity we recorded from 
hippocampal neurons arise from complex feedback networks 
and non-linear interconnections that are characteristic for 
such physiological systems.  We used the Lempel-Ziv (LZ) 
complexity estimator to analyze our recordings.  Traditional 
analysis techniques (eg Fourier, power spectra) can’t capture 
neural oscillations dynamics.  Thus we used the LZ complex-
ity, which quantifies the new pattern generation rate along 
given sequences of symbols, as a measure of the oscillation 
complexity (regularity)[29–32].  LZ complexity is similar to 
information theoretic methods such as entropy[31] and can 
cope with discrete-time symbolic sequences.  The use of 
symbolic representations of time series data is particularly 
favored when low amplitude noise hampered the data.  Thus, 
we transformed the neural signals into finite sequences in 
the symbolic space, which was perfectly suitable because 
of the particularities of our recordings.  Each sample in the 
time domain was assigned a symbol and the total number 
of unique symbols forms the sequence’s alphabet.  Since the 
data was composed of long series of field events (spikes) 
in the extracellular recordings, that form the oscillation 
response of the neurons when presented with the cholinergic 
agonist carbachol, we used a binary alphabet.  The time axis 

was divided into discrete bins.  The field events were detected 
using an amplitude threshold and each time the threshold 
was crossed, we placed a “1” in the respective bin of the sym-
bolic representation of our signals.  For all bins with values 
below the threshold were assigned as “0”[32].

Our signal x(n) was formally converted into a binary 
sequence S=s(1), s(2), … , s(n) where: 

where T is the threshold, in our case 2·σ(x(n)), where σ 
denotes the standard deviation of the signal[32].

When computing the LZ complexity, the sequence S 
is parsed from left to right and a complexity counter c(n) 
is increased whenever a new subsequence (distinct word) 
is encountered.  The algorithm followed is: (a) Let S(i,j) 
denote a substring of S that starts at position i and ends at 
position j, where i<j, S(i,j)=sisi+1∙∙∙sj and when i > j, S(i,j)={}.  
The vocabulary of the sequence S, V(S), is the set of all 
unique substrings (words) S(i,j) of S.  (b) The parsing pro-
cedure starts by comparing a substring S(i,j) to the vocabu-
lary that is comprised of all substrings of S up to j–1, that is 
V(S(1,j–1)).  If S(i,j) is present in V(S(1,j–1)) then update 
S(i,j) and V(S(1,j–1)) to S(i,j+1) V(S(1,j)), respectively and 
repeat the previous check.  If the substring is absent, place 
a dot after S(j) to indicate the end of a new component, 
update S(i,j) and V(S(1,j–1)) to S(j+1,j+1) and V(S(1,j)), 
respectively and the process continues.  The whole parsing 
operation begins at S(1,1) and continues until j=n, the total 
length of the binary sequence[30].  

For example, the sequence S=1011110100010 is parsed 
as 1·0·11·110·100·010.  Therefore, the vocabulary of S is 
6.  Similarly, a sequence S=0001101001000101 would be 
parsed as 0·001·10·100·1000·101, and hence yield a vocabu-
lary sized 6 (see[29] for details).

The LZ complexity is defined as the total number of 
words in the decomposition, c(n).  The normalized LZ com-
plexity is defined as: 

More details on the LZ method and its implementation 
are given elsewhere[29].

Results

The bath application of carbachol (100 µmol/L) gener-
ated extracellularly recorded field events (oscillations), which 
were recorded for at least 60 min.  The oscillations presented 
three distinct pattern types, one consisting of individual field 

CLZ =     c(n)
             n/log2 n
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events that were grouped into regularly spaced bursts with 
high firing rate (>3 Hz), second, with long-lasting periods 
of continuous low firing rate activity with relatively constant 
frequency (<1 Hz), and third one is a mixture of the continu-
ous firing with burst.  The bursting-type patterns are typically 
referred to as carbachol oscillations and can be recorded in 
either S pyramidale or s radiatum[33].  The carbachol oscilla-
tions may represent population spikes fired synchronously 
from multiple pyramidal cells[23, 24, 33].  

We recorded data from 72 hippocampal slices taken 
from eight wild-type (WT) and six 3xTg AD mice aged 5 
and 10 months (n=5 for the 5-month aged WT group, n=3 
for the 10-month aged WT group, n=3 for both the 5- and 
10- month aged 3xTg groups).  We generally observed more 

burst-type activity in the young age group (5 months) and 
in the wild-type (WT) mice, when compared to old (10 
months) and 3xTg AD mouse counterparts.  Figure 1 shows 
typical traces of the two neural activity patterns that were 
recorded from a 5 months old WT (A and B) or 3xTg AD 
(C and D) mouse, respectively.  Figure 2 presents the cor-
responding raw traces from WT (A and B) and 3xTg AD (C 
and D) mouse at 10 months age.  Bursting duration ranged 
generally from 5 to 10 s.  The system transitioned between 
the two states (of continuous and burst-type activity), with 
neural activity of highly irregular firing rate lasting 2−3 min.  
This transition might be a stage during which the neural 
activity undergoes reorganization, reflected by the corre-
sponding random patterns of oscillation.  Figure 3 presents 

Figure 1.  Typical recordings from two 
5 months old mice: Wild-Type (A and 
B) and Transgenic (C and D).  A and 
C: Continuous type activity of very low 
firing rate.  B and D: regularly spaced 
burst formations of higher firing rate (>3 
Hz). 

Figure 2. Typical recordings from two 
10 months old mice: Wild-Type (A and 
B) and Transgenic (C and D).  A and 
C: Continuous type activity of very low 
firing rate.  B and D: regularly spaced 
burst formations of higher firing rate (>3 
Hz). 
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typical transitional neural activity traces from a 5 month-old 
(panels A and C) and a 10 month-old mouse (panels B and 
D), respectively.  The left side panels correspond to WT and 
the right side panels to the 3xTg AD mouse.  We observed 
no neural activity during the control experiments (no drug 
applied).

We further analyzed the carbachol’s effects on the com-
plexity of the hippocampal oscillations in WT and 3xTg AD 
mice using the LZ estimator.  For this analysis, the segments 
of 1 min were taken during the continuous-type activity from 
records exhibiting more than 3 min of relatively constant 
firing rate (as shown in Figure 1 and 2, panels A and C).  We 
also selected 5 consecutive bursts from each recording exhib-
iting bursting type activity.

The procedure was repeated for both age groups in WT 
and 3xTg AD mice.  As shown in Figure 4, the complexity 
values of continuous-type neural activity segments were 
similar when comparing WT and 3xTg AD mice.  The old 
age group’s values were slightly (but immaterially) smaller 

than the young group.  However, when examining the burst-
type activity’s complexity (Figure 5), the patterns changed 
dramatically.  The difference in the WT case is lower but still 
significant (P<0.01).  The complexity values for the 3xTg AD 
mice were decreased with a drastic drop in the case of the 
10-month-old age group (significant, with P<0.001).  

Figure 6 shows the complexity values of 1 min long signal 
segments during transition phase.  The differences between 
the complexities of young and old age group are irrelevant 
for both WT and 3xTg AD mice.

Discussion

In the present study, we proposed a novel nonlinear 
dynamical analysis method based on the LZ complexity 
method to analyze hippocampal oscillations induced by 
acute carbachol exposure on hippocampal slices in WT and 

Figure 3.  Typical recordings during 
transition from continuous to burst 
type neural activity: Wild-Type (A and 
B) and Transgenic (C and D).  A and 
C: 5-month-old mouse.  B and D: 10- 
month-old mouse.

Figure 4.  Complexity values for continuous type neural activity. Values 
correspond to complexity averages (±SEM) of 1 min long recording 
segments taken from each of the 14 mice (nWT_10 months=nWT_5months=34, 
nTG_10 months=nTG_5 months=28). 

Figure 5.  Complexity values for burst-type neural activity.  Values 
correspond to complexity averages (±SEM) of 5 consecutive bursts 
taken for each of the 14 mice (nWT_10 months=nWT_5 months=45 and nTG_10 months 
=nTG_5 months= 20).  cP<0.01.
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3xTg AD mice.  By using this mathematic analysis, we are 
able to quantitatively distinguish three patterns from hip-
pocampal neuronal oscillations.  These patterns may reflect 
different status of neuronal network synchronization.  More 
importantly, the analysis using the non-linear mathematic 
model (LZ complexity estimator) demonstrates that only 
burst pattern exhibits significant impairment in 3xTg AD 
mice and this impairment is likely age-dependent.  

The neural oscillations recorded from hippocampus neu-
rons arise from complex feedback networks and non-linear 
interconnections, which are characteristic for physiological 
systems.  Traditional analysis techniques (eg Fourier, power 
spectra) may not capture the dynamics of neural oscilla-
tions[22, 34].  A series of methods have been used to investigate 
the properties of biomedical signals, such as the Shannon 
entropy (ShEn), spectral entropy (SpEn), approximate 
entropy (ApEn), Lempel-Ziv complexity (LZ), or Higuchi 
fractal dimension (HFD).  Ferenets et al[34] provided an 
extensive comparison of different entropy and complex-
ity measures using surrogate signals as well as real EEG 
signals[34].  Their study is especially interested in the sensitiv-
ity of the mentioned measures to the bandwidth of the signal 
spectrum and the shape of the probability density function 
(PDF).  They showed that ShEn does not depend on signal 
bandwidth as could be expected from the definition of this 
measure.  The SpEn, in contrary to ShEn, does not depend 
on the shape of the signal’s PDF.  ApEn depends on both the 
shape of the PDF as well as the spectral bandwidth of the 
signal.  At sharp PDFs, ApEn behaves similarly to ShEn with 
respect to the shape of the PDF (given that the bandwidth 
is large enough).  As the signal amplitude becomes more 
uniformly distributed, ApEn values stay constant, depend-
ing only on the spectral bandwidth.  Also, the ApEn values 
slightly increase with increasing signal length.  The behavior 
of LZ complexity and HFD look similar.  Both parameters 
depend mainly on the bandwidth of the signal spectrum (less 

than the other measures, however) while slight dependence 
on the PDF can be observed mostly when the parameters 
controlling PDF’s sharpness is small.

Additionally, Ferenets et al[34] showed that while LZ com-
plexity, ApEn, and HFD are relatively independent of the 
amount of data (window length), SpEn and, in some cases, 
ShEn, show significant trend.  This comes from the fact that 
ShEn and SpEn both use transformation over the Shannon 
function.  The same study concludes that methods based on 
the phase space background (ApEn and HFD) or pattern 
recurrence (LZ complexity) seems to have slight advantage 
in analyzing the EEG signals.  Their results clearly show that 
the various parameters called entropy actually measure dif-
ferent properties of the signal.  ShEn, the “classical” entropy 
measure, does not depend on signal spectrum while SpEn 
is insensitive to the amplitude distribution (which is easy 
to predict from the mathematical formulas defining these 
parameters).  However, LZ complexity seems to be more 
suitable when dealing with finite symbol and discrete time 
signals, as it can be expected from its mathematical formula.

As noted by several authors, the complex feedback net-
works and nonlinear couplings inherent in the physiological 
system give rise to characteristic oscillations[35–37].  Nagarajan 
et al[37] pointed out that while the system is undisputedly 
nonlinear, it is far from trivial whether this nonlinearity 
is exhibited in the external recording.  The oscillations in 
these recordings can be either due to a nondeterministic 
component or a nonlinear deterministic component.  Tra-
ditional techniques such as Fourier analysis fail to provide 
adequate information regarding the dynamics of the data.  
For instance, it is possible to generate two data sets, which 
have similar spectra but different dynamics.  The search for 
alternate measures to quantify the dynamics has been an area 
of recent interest.

The use of symbolic techniques to map a time series 
into a sequence retaining its dynamics has been quite 
popular[38–57].  The robustness of the resulting symbolic rep-
resentation to low amplitude noise is also appreciated[40–42].  
The fundamental idea is to partition the samples in the 
real space into a finite sequence in the symbol space.  Each 
sample in the original data is assigned a unique symbol and 
the number of distinct symbols forms the alphabet set of the 
sequence.  The regularity of the resulting sequence is quanti-
fied using a chosen complexity measure.

The LZ complexity has been applied extensively in bio-
medical signal analysis as a metric to estimate the complex-
ity of discrete-time physiologic signals, proving its robust-
ness when over other complexity/entropy measures.  For 
instance, LZ has been used for recognition of structural 

Figure 6.  Complexity values for transitional neural activity.  Values 
correspond to complexity averages (±SEM) of 1 min long recording 
segments taken from each of the 14 mice (nWT_10 months=nWT_5 months=12 
and nTG_10 months=nTG_5 months=18).
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regularities[42], for complexity characterization of DNA 
sequences[45–47], to develop new methods for discovering pat-
terns in DNA sequences by applying it to genomic sequences 
of Plasmodium falciparum[47], and to estimate the entropy 
of neural discharges (spike trains)[48, 49].  LZ complexity has 
also been used to study brain function[51], brain informa-
tion transmission[52], and EEG complexity in patients with 
Alzheimer’s disease[53], and epileptic seizures[54].  Other 
authors have used LZ complexity to study ECG dynamics[55], 
Generally, previous work involving the application of LZ in 
the context of biomedical signal analysis has consisted of ana-
lyzing signals from a specific patient population or pathology, 
and identifying a LZ change associated with a specific condi-
tion of interest[56].  The fact that LZ quantifies primarily the 
signal bandwidth and bandwidth of the signal harmonics is 
relevant in biomedical signal analysis[29].  

Due to its robustness, LZ complexity has also found 
applications to the neural recordings.  Szczepanski et al[57] 
present three applications of LZ complexity to the analysis 
of spike trains: (i) estimation of the entropy, (ii) discrimi-
nation of neural responses via complexity curves and (iii) 
discrimination of neural responses via the number of states 
of the corresponding neuronal sources.  Additionally, Amigo 
et al[49] used LZ for estimating the entropy rate of spike trains 
and underlined that LZ is closely related to such important 
source properties as entropy and compression ratio, but in 
contrast to these, it is a property of individual sequences [49].

Previous studies[58–62] in transgenic (Tg) mice models of 
Alzheimer’s Disease (AD) point out the presence of quite 
a number of beta-amyloid deposit in the hippocampus and 
other brain areas as well as cholinergic dysfunction and 
impairment in learning and memory functions.  Therefore a 
vast amount of research has been done to make a compari-
son between the 7 month-old Tg and WT (wild type) mice 
in terms of the intracellular pathways that might be switched 
on/off in the hippocampal areas.  One of the major pathways 
that have been proven to be responsive to inflammatory 
stimuli, environmental stress or other insults is ERK (extra-
cellular regulated kinase)[63].  It has been widely accepted 
that activation of ERK is very closely related to memory 
formation[64–67].  Since it has been shown in many systems 
that, ERK activation is downstream of cholinergic stimula-
tion through both nicotinic[65] and muscarinic[66] receptors, 
a research has been done to determine whether cholinergic 
stimulation might activate ERK differently in the hippocam-
pus of Tg and WT mice.  Cholinergic stimulation with CCh 
(carbachol) has shown a strong increase in ERK activation 
in the CA1 (cornu ammonis area 1) pyramidal neurons of 
WT mice while this effect is significantly less dense in the 

hippocampus of Tg mice, pointing out a possible mechanism 
responsible for the presence of memory deficits [58] in them 
because of the strong connections between the ERK pathway 
and the cholinergic system in memory functions [68].  

All these previous studies encouraged us to use this novel 
nonlinear dynamical analysis method, based on the LZ com-
plexity method, to analyze hippocampal oscillations induced 
by acute carbachol exposure on hippocampal slices in WT 
and 3xTg AD mice.  Our analysis demonstrated that the 
complexity values of continuous patterns in response to car-
bachol were almost the same for the 5-month old wild and 
transgenic mice.  But, they were decreased in the 10-month 
old wild and transgenic mice, but these differences were not 
statistically significant.  On the other hand, the complexity 
values of burst patterns were smaller for the 5-month old 
transgenic mice compared to those of 5-month wild mice 
and were significantly smaller in the 10-month wild and 
transgenic mice.  Thus, the difference was much more dras-
tic for the transgenic mice.  Finally, the complexity values 
of the mixed patterns were more or less the same for the 5- 
and 10-month old wild and transgenic mice.  The difference 
in the WT case is lower but still significant (P<0.01).  We 
speculate that the reason for the drastic drop in the complex-
ity of burst-type neural activity of TG mice is the declined 
cholinergic neurotransmission that has been reported in TG 
mouse models in several studies.  This neurotransmission 
deterioration was shown to be caused by the formation of 
amyloid β–peptide deposits[59–61].  The even larger decrease 
in complexity values that we observed in our data for the 
older group matches with results that indicate the deteriora-
tion to be age-dependent[59,  60].  

Therefore, our analysis indicates that the LZ based com-
plexity estimator is a useful tool for the characterization of 
the dynamical changes in hippocampal oscillations.  It is well 
known that neuronal synchronization deficits, especially 
theta oscillation, are correlated to learning and memory defi-
cit in the AD patients.  As demonstrated in our mathematical 
analysis, such attenuation could be quantitatively represented 
as an impairment of burst pattern firing during exposure to 
CCh.  Therefore, our analysis not only provides a convinced 
way to evaluate the nature of hippocampal neuronal oscilla-
tions, but also may open a new window to help the diagnosis 
of AD, to evaluate pathological status of AD and also to 
evaluate the effects of the medical therapy of the AD.  
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